Headquarter: Chemical Industry Park, Economic Development Zone,  JiNan City,  ShanDong Province, China.

Phone +86-152 8958 7728

Angela@BlueSkytcca.com

The anthropogenic salt cycle – Nature.com

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.
Advertisement
Nature Reviews Earth & Environment (2023)
70 Accesses
282 Altmetric
Metrics details
Increasing salt production and use is shifting the natural balances of salt ions across Earth systems, causing interrelated effects across biophysical systems collectively known as freshwater salinization syndrome. In this Review, we conceptualize the natural salt cycle and synthesize increasing global trends of salt production and riverine salt concentrations and fluxes. The natural salt cycle is primarily driven by relatively slow geologic and hydrologic processes that bring different salts to the surface of the Earth. Anthropogenic activities have accelerated the processes, timescales and magnitudes of salt fluxes and altered their directionality, creating an anthropogenic salt cycle. Global salt production has increased rapidly over the past century for different salts, with approximately 300 Mt of NaCl produced per year. A salt budget for the USA suggests that salt fluxes in rivers can be within similar orders of magnitude as anthropogenic salt fluxes, and there can be substantial accumulation of salt in watersheds. Excess salt propagates along the anthropogenic salt cycle, causing freshwater salinization syndrome to extend beyond freshwater supplies and affect food and energy production, air quality, human health and infrastructure. There is a need to identify environmental limits and thresholds for salt ions and reduce salinization before planetary boundaries are exceeded, causing serious or irreversible damage across Earth systems.
This is a preview of subscription content, access via your institution

Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time

Subscribe to this journal
Receive 12 digital issues and online access to articles
$99.00 per year
only $8.25 per issue

Rent or buy this article
Prices vary by article type
from$1.95
to$39.95

Prices may be subject to local taxes which are calculated during checkout
Jackson, R. B. & Jobbágy, E. G. From icy roads to salty streams. Proc. Natl Acad. Sci. USA 102, 14487–14488 (2005).
Article  Google Scholar 
Anning, D. W. & Flynn, M. E. Dissolved-solids sources, loads, yields, and concentrations in streams of the conterminous United States (USGS, 2014).
Dugan, H. A. & Arnott, S. E. The ecosystem implications of road salt as a pollutant of freshwaters. Wiley Interdiscip. Rev. Water 10, e1629 (2022).
Article  Google Scholar 
Cañedo-Argüelles, M. et al. Effects of potash mining on river ecosystems: an experimental study. Environ. Pollut. 224, 759–770 (2017).
Article  Google Scholar 
US Geological Survey. How large is a lifetime supply of minerals for the average person? USGS https://www.usgs.gov/faqs/how-large-a-lifetime-supply-minerals-average-person (2023).
Grant, S. B. et al. Can common pool resource theory catalyze stakeholder-driven solutions to the freshwater salinization syndrome? Environ. Sci. Technol. 56, 13517–13527 (2022).
Article  Google Scholar 
Kaushal, S. S. et al. Five state factors control progressive stages of freshwater salinization syndrome. Limnol. Oceanogr. Lett. 8, 190–211 (2023).
Article  Google Scholar 
Kaushal, S. S. et al. Freshwater salinization syndrome: from emerging global problem to managing risks. Biogeochemistry 154, 255–292 (2021).
Article  Google Scholar 
Kaushal, S. S. et al. Freshwater salinization syndrome on a continental scale. Proc. Natl Acad. Sci. USA 115, E574–E583 (2018).
Article  Google Scholar 
Kaushal, S. S. et al. Novel ‘chemical cocktails’ in inland waters are a consequence of the freshwater salinization syndrome. Phil. Trans. R. Soc. B 374, 20180017 (2019).
Article  Google Scholar 
Kaushal, S. S. et al. Making ‘chemical cocktails’ — evolution of urban geochemical processes across the periodic table of elements. Appl. Geochem. 119, 104632 (2020).
Article  Google Scholar 
Bhide, S. V. et al. Addressing the contribution of indirect potable reuse to inland freshwater salinization. Nat. Sustain. 4, 699–707 (2021).
Article  Google Scholar 
DeVilbiss, S. E., Steele, M. K., Krometis, L.-A. H. & Badgley, B. D. Freshwater salinization increases survival of Escherichia coli and risk of bacterial impairment. Water Res. 191, 116812 (2021).
Article  Google Scholar 
Johnsen, H. K., Rueslatten, H. G. & Hovland, M. T. The ‘global salt cycle’: formation of giant salt accumulations, a result of subduction, mantle upwelling, and rifting. Preprint at https://doi.org/10.20944/preprints202107.0377.v1 (2021).
Kostick, D. S. Material flow of salt (USGS, 1993).
Meybeck, M. in Treatise on Geochemistry Vol. 5 (eds Holland, H. D. & Turekian, K. K.) 207–223 (Elsevier, 2003).
Anderson, N. L. & Knapp, R. An overview of some of the large scale mechanisms of salt dissolution in western Canada. Geophysics 58, 1375–1387 (1993).
Article  Google Scholar 
Anderson, R. Y. & Kirkland, D. W. Dissolution of salt deposits by brine density flow. Geology 8, 66 (1980).
Article  Google Scholar 
Jenyon, M. K. Seismic expression of salt dissolution-related features in the North Sea. Bull. Can. Pet. Geol. 36, 274–283 (1988).
Google Scholar 
Anderson, R. Y. Deep-seated salt dissolution in the Delaware Basin, Texas, and New Mexico. New Mexico Geol. Soc. 10, 133–145 (1981).
Google Scholar 
Cooper, A. H. in Geological Hazards in the UK: Their Occurrence, Monitoring and Mitigation Ch. 14 (eds Giles, D. P. & Griffiths, J. S.) (Geological Society of London, 2020).
Smith, J. E. & Santamarina, J. C. Red sea evaporites: formation, creep and dissolution. Earth Sci. Rev. 232, 104115 (2022).
Article  Google Scholar 
Hudec, M. R. & Jackson, M. P. A. Terra infirma: understanding salt tectonics. Earth Sci. Rev. 82, 1–28 (2007).
Article  Google Scholar 
Hopmans, J. W. et al. in Advances in Agronomy Vol. 169 Ch. 1 (ed. Sparks, D. L.) 1–191 (Academic, 2021).
Daliakopoulos, I. N. et al. The threat of soil salinity: a European scale review. Sci. Total Environ. 573, 727–739 (2016).
Article  Google Scholar 
White, P. J. & Broadley, M. R. Chloride in soils and its uptake and movement within the plant: a review. Ann. Bot. 88, 967–988 (2001).
Article  Google Scholar 
Ali, S. et al. Biochar soil amendment on alleviation of drought and salt stress in plants: a critical review. Env. Sci. Pollut. Res. 24, 12700–12712 (2017).
Article  Google Scholar 
Taylor, L. L. et al. Biological weathering and the long-term carbon cycle: integrating mycorrhizal evolution and function into the current paradigm. Geobiology 7, 171–191 (2009).
Article  Google Scholar 
Likens, G. E. et al. The biogeochemistry of calcium at Hubbard Brook. Biogeochemistry 41, 89–173 (1998).
Article  Google Scholar 
Leri, A. C. & Myneni, S. C. B. Organochlorine turnover in forest ecosystems: the missing link in the terrestrial chlorine cycle. Glob. Biogeochem. Cycles 24, GB4021 (2010).
Article  Google Scholar 
Sverdrup, H. Chemical weathering of soil minerals and the role of biological processes. Fungal Biol. Rev. 23, 94–100 (2009).
Article  Google Scholar 
Tripler, C. E., Kaushal, S. S., Likens, G. E. & Todd Walter, M. Patterns in potassium dynamics in forest ecosystems. Ecol. Lett. 9, 451–466 (2006).
Article  Google Scholar 
Elmore, A. J., Kaste, J. M., Okin, G. S. & Fantle, M. S. Groundwater influences on atmospheric dust generation in deserts. J. Arid Environ. 72, 1753–1765 (2008).
Article  Google Scholar 
Li, X., Chang, S. X. & Salifu, K. F. Soil texture and layering effects on water and salt dynamics in the presence of a water table: a review. Environ. Rev. 22, 41–50 (2014).
Article  Google Scholar 
Schlesinger, W. H. The formation of caliche in soils of the Mojave Desert, California. Geochim. Cosmochim. Acta 49, 57–66 (1985).
Article  Google Scholar 
Stallard, R. F. Tectonic, environmental, and human aspects of weathering and erosion: a global review using a steady-state perspective. Annu. Rev. Earth Planet. Sci. 23, 11–39 (1995).
Article  Google Scholar 
Shields, G. A. & Mills, B. J. W. Evaporite weathering and deposition as a long-term climate forcing mechanism. Geology 49, 299–303 (2020).
Article  Google Scholar 
Gaillardet, J., Dupré, B., Louvat, P. & Allègre, C. J. Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers. Chem. Geol. 159, 3–30 (1999).
Article  Google Scholar 
Vodyanitskii, Yu. N. & Makarov, M. I. Organochlorine compounds and the biogeochemical cycle of chlorine in soils: a review. Eurasian Soil Sci. 50, 1025–1032 (2017).
Article  Google Scholar 
Kaushal, S. S. et al. Longitudinal stream synoptic monitoring tracks chemicals along watershed continuums: a typology of trends. Front. Environ. Sci. 11, 1122485 (2023).
Article  Google Scholar 
Domenico, P. A. & Robbins, G. A. The displacement of connate water from aquifers. Geol. Soc. Am. Bull. 96, 328–335 (1985).
Article  Google Scholar 
Yager, R. M., McCoy, K. J., Voss, C. I., Sanford, W. E. & Winston, R. B. The role of uplift and erosion in the persistence of saline groundwater in the shallow subsurface. Geophys. Res. Lett. 44, 3672–3681 (2017).
Article  Google Scholar 
Younger, P. L., Boyce, A. J. & Waring, A. J. Chloride waters of Great Britain revisited: from subsea formation waters to onshore geothermal fluids. Proc. Geol. Assoc. 126, 453–465 (2015).
Article  Google Scholar 
Stotler, R. L., Frape, S. K., Ruskeeniemi, T., Pitkänen, P. & Blowes, D. W. The interglacial–glacial cycle and geochemical evolution of Canadian and Fennoscandian Shield groundwaters. Geochim. Cosmochim. Acta 76, 45–67 (2012).
Article  Google Scholar 
Li, C., Gao, X., Li, S. & Bundschuh, J. A review of the distribution, sources, genesis, and environmental concerns of salinity in groundwater. Env. Sci. Pollut. Res. 27, 41157–41174 (2020).
Article  Google Scholar 
Tosaki, Y. et al. Deep incursion of seawater into the Hiroshima Granites during the Holocene transgression: evidence from 36Cl age of saline groundwater in the Hiroshima area, Japan. Geochem. J. 51, 263–275 (2017).
Article  Google Scholar 
Manca, F., Capelli, G. & Tuccimei, P. Sea salt aerosol groundwater salinization in the Litorale Romano Natural Reserve (Rome, Central Italy). Env. Earth Sci. 73, 4179–4190 (2015).
Article  Google Scholar 
Mackenzie, F. T. & Garrels, R. M. Chemical mass balance between rivers and oceans. Am. J. Sci. 264, 507–525 (1966).
Article  Google Scholar 
Mackenzie, F. T. & Kump, L. R. Reverse weathering, clay mineral formation, and oceanic element cycles. Science 270, 586–586 (1995).
Article  Google Scholar 
Isson, T. T. & Planavsky, N. J. Reverse weathering as a long-term stabilizer of marine pH and planetary climate. Nature 560, 471–475 (2018).
Article  Google Scholar 
Morse, J. W., Arvidson, R. S. & Lüttge, A. Calcium carbonate formation and dissolution. Chem. Rev. 107, 342–381 (2007).
Article  Google Scholar 
Briggs, L. I. Evaporite facies. J. Sediment. Res. 28, 46–56 (1958).
Google Scholar 
Hovland, M., Rueslåtten, H. & Johnsen, H. K. Large salt accumulations as a consequence of hydrothermal processes associated with ‘Wilson cycles’: a review, part 2: application of a new salt-forming model on selected cases. Mar. Pet. Geol. 92, 128–148 (2018).
Article  Google Scholar 
Hovland, M., Rueslåtten, H. & Johnsen, H. K. Large salt accumulations as a consequence of hydrothermal processes associated with ‘Wilson cycles’: a review, part 1: towards a new understanding. Mar. Pet. Geol. 92, 987–1009 (2018).
Article  Google Scholar 
Vet, R. et al. A global assessment of precipitation chemistry and deposition of sulfur, nitrogen, sea salt, base cations, organic acids, acidity and pH, and phosphorus. Atmos. Environ. 93, 3–100 (2014).
Article  Google Scholar 
Erickson, D. J. III & Duce, R. A. On the global flux of atmospheric sea salt. J. Geophys. Res. 93, 14079–14088 (1988).
Article  Google Scholar 
Kohfeld, K. E. & Harrison, S. P. DIRTMAP: the geological record of dust. Earth Sci. Rev. 54, 81–114 (2001).
Article  Google Scholar 
Lawrence, C. R. & Neff, J. C. The contemporary physical and chemical flux of aeolian dust: a synthesis of direct measurements of dust deposition. Chem. Geol. 267, 46–63 (2009).
Article  Google Scholar 
Prospero, J. M., Ginoux, P., Torres, O., Nicholson, S. E. & Gill, T. E. Environmental characterization of global sources of atmospheric soil dust identified with the Nimbus 7 Total Ozone Mapping Spectrometer (TOMS) absorbing aerosol product. Rev. Geophys. 40, 1002 (2002).
Article  Google Scholar 
Feger, K. H. in Magnesium Deficiency in Forest Ecosystems (eds Hüttl, R. F. & Schaaf, W.) 67–99 (Springer, 1997).
Middleton, N. J. Desert dust hazards: a global review. Aeolian Res. 24, 53–63 (2017).
Article  Google Scholar 
Skiles, S. M. et al. Implications of a shrinking Great Salt Lake for dust on snow deposition in the Wasatch Mountains, UT, as informed by a source to sink case study from the 13–14 April 2017 dust event. Environ. Res. Lett. 13, 124031 (2018).
Article  Google Scholar 
Fischer, H., Siggaard-Andersen, M.-L., Ruth, U., Röthlisberger, R. & Wolff, E. Glacial/interglacial changes in mineral dust and sea-salt records in polar ice cores: sources, transport, and deposition. Rev. Geophys. 45, RG1002 (2007).
Article  Google Scholar 
Tjandraatmadja, G., Pollard, C., Sheedy, C. & Gozukra, Y. Sources of contaminants in domestic wastewater: nutrients and additional elements from household products (CSIRO, 2010).
Diaper, C. et al. Sources of critical contaminants in domestic wastewater: contaminant loads from household appliances (CSIRO, 2008).
US Geological Survey. Minerals Yearbook, Volume 1: Metals and Minerals (USGS, 2023).
Kaushal, S. S. et al. Freshwater salinization syndrome alters retention and release of chemical cocktails along flowpaths: from stormwater management to urban streams. Freshw. Sci. 41, 420–441 (2022).
Article  Google Scholar 
Kaushal, S. S. et al. Increased river alkalinization in the Eastern U.S. Environ. Sci. Technol. 47, 10302–10311 (2013).
Google Scholar 
Kaushal, S. S. et al. Increased salinization of fresh water in the northeastern United States. Proc. Natl Acad. Sci. USA 102, 13517–13520 (2005).
Article  Google Scholar 
Dugan, H. A. et al. Salting our freshwater lakes. Proc. Natl Acad. Sci. USA 114, 4453–4458 (2017).
Article  Google Scholar 
Drake, T. W. et al. Increasing alkalinity export from large Russian arctic rivers. Environ. Sci. Technol. 52, 8302–8308 (2018).
Article  Google Scholar 
Gomez, F. A., Wanninkhof, R., Barbero, L. & Lee, S.-K. Increasing river alkalinity slows ocean acidification in the Northern Gulf of Mexico. Geophys. Res. Lett. 48, e2021GL096521 (2021).
Article  Google Scholar 
Cai, W.-J. et al. A comparative overview of weathering intensity and HCO3 flux in the world’s major rivers with emphasis on the Changjiang, Huanghe, Zhujiang (Pearl) and Mississippi Rivers. Cont. Shelf Res. 28, 1538–1549 (2008).
Article  Google Scholar 
Regnier, P. et al. Anthropogenic perturbation of the carbon fluxes from land to ocean. Nat. Geosci. 6, 597–607 (2013).
Article  Google Scholar 
Kaushal, S. S. et al. Human-accelerated weathering increases salinization, major ions, and alkalinization in fresh water across land use. Appl. Geochem. 83, 121–135 (2017).
Article  Google Scholar 
Ross, M. R. V., Nippgen, F., Hassett, B. A., McGlynn, B. L. & Bernhardt, E. S. Pyrite oxidation drives exceptionally high weathering rates and geologic CO2 release in mountaintop-mined landscapes. Glob. Biogeochem. Cycles 32, 1182–1194 (2018).
Article  Google Scholar 
Robinson, H. K. & Hasenmueller, E. A. Transport of road salt contamination in karst aquifers and soils over multiple timescales. Sci. Total Environ. 603–604, 94–108 (2017).
Article  Google Scholar 
Bester, M. L., Frind, E. O., Molson, J. W. & Rudolph, D. L. Numerical investigation of road salt impact on an urban wellfield. Groundwater 44, 165–175 (2006).
Article  Google Scholar 
Stets, E. G., Kelly, V. J. & Crawford, C. G. Long-term trends in alkalinity in large rivers of the conterminous US in relation to acidification, agriculture, and hydrologic modification. Sci. Total Environ. 488–489, 280–289 (2014).
Article  Google Scholar 
Raymond, P. A., Oh, N.-H., Turner, R. E. & Broussard, W. Anthropogenically enhanced fluxes of water and carbon from the Mississippi river. Nature 451, 449–452 (2008).
Article  Google Scholar 
Yusta-García, R., Orta-Martínez, M., Mayor, P., González-Crespo, C. & Rosell-Melé, A. Water contamination from oil extraction activities in Northern Peruvian Amazonian rivers. Environ. Pollut. 225, 370–380 (2017).
Article  Google Scholar 
Vengosh, A., Jackson, R. B., Warner, N., Darrah, T. H. & Kondash, A. A critical review of the risks to water resources from unconventional shale gas development and hydraulic fracturing in the United States. Environ. Sci. Technol. 48, 8334–8348 (2014).
Article  Google Scholar 
Badaruddin, S., Werner, A. D. & Morgan, L. K. Water table salinization due to seawater intrusion. Water Resour. Res. 51, 8397–8408 (2015).
Article  Google Scholar 
Baraza, T. & Hasenmueller, E. A. Road salt retention and transport through vadose zone soils to shallow groundwater. Sci. Total Environ. 755, 142240 (2021).
Article  Google Scholar 
Robinson, H. K., Hasenmueller, E. A. & Chambers, L. G. Soil as a reservoir for road salt retention leading to its gradual release to groundwater. Appl. Geochem. 83, 72–85 (2017).
Article  Google Scholar 
Cao, T., Han, D. & Song, X. Past, present, and future of global seawater intrusion research: a bibliometric analysis. J. Hydrol. 603, 126844 (2021).
Article  Google Scholar 
Jasechko, S., Perrone, D., Seybold, H., Fan, Y. & Kirchner, J. W. Groundwater level observations in 250,000 coastal US wells reveal scope of potential seawater intrusion. Nat. Commun. 11, 3229 (2020).
Article  Google Scholar 
Panthi, J., Pradhanang, S. M., Nolte, A. & Boving, T. B. Saltwater intrusion into coastal aquifers in the contiguous United States — a systematic review of investigation approaches and monitoring networks. Sci. Total Environ. 836, 155641 (2022).
Article  Google Scholar 
Cogswell, M. E. et al. Estimated 24-hour urinary sodium and potassium excretion in US adults. JAMA 319, 1209 (2018).
Article  Google Scholar 
US Food and Drug Administration. Sodium in your diet: use the nutrition facts label and reduce your intake (FDA, 2022).
Tjandraatmadja, G., Pollard, C., Gozukara, Y. & Sheedy, C. Origins of priority contaminants in household wastewater — an experimental assessment (CSIRO, 2009).
van Puijenbroek, P. J. T. M., Beusen, A. H. W. & Bouwman, A. F. Datasets of the phosphorus content in laundry and dishwasher detergents. Data Brief 21, 2284–2289 (2018).
Article  Google Scholar 
Ivushkin, K. et al. Global mapping of soil salinity change. Remote Sens. Environ. 231, 111260 (2019).
Article  Google Scholar 
Food and Agriculture Organization of the United Nations. Saline soils and their management. FAO https://www.fao.org/3/x5871e/x5871e04.htm (2016).
Mahajan, S. & Tuteja, N. Cold, salinity and drought stresses: an overview. Arch. Biochem. Biophys. 444, 139–158 (2005).
Article  Google Scholar 
Litalien, A. & Zeeb, B. Curing the earth: a review of anthropogenic soil salinization and plant-based strategies for sustainable mitigation. Sci. Total Environ. 698, 134235 (2020).
Article  Google Scholar 
Jeppesen, E., Beklioğlu, M., Özkan, K. & Akyürek, Z. Salinization increase due to climate change will have substantial negative effects on inland waters: a call for multifaceted research at the local and global scale. Innovation 1, 100030 (2020).
Google Scholar 
Letolle, R., Aladin, N., Filipov, I. & Boroffka, N. G. O. The future chemical evolution of the Aral Sea from 2000 to the years 2050. Mitig. Adapt. Strateg. Glob. Change 10, 51–70 (2005).
Article  Google Scholar 
Darst, B. C. Development of the potash fertilizer industry. Fertil. Res. 28, 103–107 (1991).
Article  Google Scholar 
David, M. B., Mitchell, C. A., Gentry, L. E. & Salemme, R. K. Chloride sources and losses in two tile-drained agricultural watersheds. J. Environ. Qual. 45, 341–348 (2016).
Article  Google Scholar 
Drew, L. J., Langer, W. H. & Sachs, J. S. Environmentalism and natural aggregate mining. Nat. Resour. Res. 11, 19–28 (2002).
Article  Google Scholar 
Winkler, E. M. Weathering and weathering rates of natural stone. Environ. Geol. Water Sci. 9, 85–92 (1987).
Article  Google Scholar 
Abuduwaili, J., Liu, D. & Wu, G. Saline dust storms and their ecological impacts in arid regions: saline dust storms and their ecological impacts in arid regions. J. Arid Land 2, 144–150 (2010).
Article  Google Scholar 
Gholampour, A. et al. Characterization of saline dust emission resulted from Urmia Lake drying. J. Env. Health Sci. Eng. 13, 82 (2015).
Article  Google Scholar 
Neff, J. C. et al. Increasing eolian dust deposition in the western United States linked to human activity. Nat. Geosci. 1, 189–195 (2008).
Article  Google Scholar 
Goudie, A. S. & Middleton, N. J. The changing frequency of dust storms through time. Clim. Change 20, 197–225 (1992).
Article  Google Scholar 
Kolesar, K. R. et al. Increases in wintertime PM2.5 sodium and chloride linked to snowfall and road salt application. Atmos. Environ. 177, 195–202 (2018).
Article  Google Scholar 
McNamara, S. M. et al. Observation of road salt aerosol driving inland wintertime atmospheric chlorine chemistry. ACS Cent. Sci. 6, 684–694 (2020).
Article  Google Scholar 
Kakavas, S. & Pandis, S. N. Effects of urban dust emissions on fine and coarse PM levels and composition. Atmos. Environ. 246, 118006 (2021).
Article  Google Scholar 
Parisi, A., Monno, V. & Fidelibus, M. D. Cascading vulnerability scenarios in the management of groundwater depletion and salinization in semi-arid areas. Int. J. Disaster Risk Reduct. 30, 292–305 (2018).
Article  Google Scholar 
Hintz, W. D. et al. Salinization triggers a trophic cascade in experimental freshwater communities with varying food-chain length. Ecol. Appl. 27, 833–844 (2017).
Article  Google Scholar 
Hintz, W. D., Jones, D. K. & Relyea, R. A. Evolved tolerance to freshwater salinization in zooplankton: life-history trade-offs, cross-tolerance and reducing cascading effects. Phil. Trans. R. Soc. B 374, 20180012 (2019).
Article  Google Scholar 
Moffett, E. R., Baker, H. K., Bonadonna, C. C., Shurin, J. B. & Symons, C. C. Cascading effects of freshwater salinization on plankton communities in the Sierra Nevada. Limnol. Oceanogr. Lett. 8, 30–37 (2023).
Article  Google Scholar 
Latham, J. & Smith, M. H. Effect on global warming of wind-dependent aerosol generation at the ocean surface. Nature 347, 372–373 (1990).
Article  Google Scholar 
Micklin, P. The Aral Sea disaster. Annu. Rev. Earth Planet. Sci. 35, 47–72 (2007).
Article  Google Scholar 
Vengosh, A. Salinization and saline environments. Treatise Geochem. 9, 35 (2003).
Google Scholar 
Pereira, C. S., Lopes, I., Abrantes, I., Sousa, J. P. & Chelinho, S. Salinization effects on coastal ecosystems: a terrestrial model ecosystem approach. Phil. Trans. R. Soc. B 374, 20180251 (2019).
Article  Google Scholar 
Hintz, W. D. et al. Current water quality guidelines across North America and Europe do not protect lakes from salinization. Proc. Natl Acad. Sci. USA 119, e2115033119 (2022).
Article  Google Scholar 
Cunillera-Montcusí, D. et al. Freshwater salinisation: a research agenda for a saltier world. Trends Ecol. Evol. 37, 440–453 (2022).
Article  Google Scholar 
Cañedo-Argüelles, M. et al. Salinisation of rivers: an urgent ecological issue. Environ. Pollut. 173, 157–167 (2013).
Article  Google Scholar 
Kinsman‐Costello, L. et al. Mud in the city: effects of freshwater salinization on inland urban wetland nitrogen and phosphorus availability and export. Limnol. Oceanogr. Lett. 8, 112–130 (2023).
Article  Google Scholar 
Kaushal, S. S. Increased salinization decreases safe drinking water. Environ. Sci. Technol. 50, 2765–2766 (2016).
Article  Google Scholar 
Jardine, A., Speldewinde, P., Carver, S. & Weinstein, P. Dryland salinity and ecosystem distress syndrome: human health implications. Ecohealth 4, 10–17 (2007).
Article  Google Scholar 
Shammi, M., Rahman, Md. M., Bondad, S. & Bodrud-Doza, Md. Impacts of salinity intrusion in community health: a review of experiences on drinking water sodium from coastal areas of Bangladesh. Healthcare 7, 50 (2019).
Article  Google Scholar 
Khan, A. E. et al. Salinity in drinking water and the risk of (pre)eclampsia and gestational hypertension in coastal Bangladesh: a case-control study. PLoS ONE 9, e108715 (2014).
Article  Google Scholar 
Small, I., van der Meer, J. & Upshur, R. E. Acting on an environmental health disaster: the case of the Aral Sea. Environ. Health Perspect. 109, 547–549 (2001).
Article  Google Scholar 
Jones, B. A. & Fleck, J. Shrinking lakes, air pollution, and human health: evidence from California’s Salton Sea. Sci. Total Environ. 712, 136490 (2020).
Article  Google Scholar 
Ghale, Y. A. G., Tayanc, M. & Unal, A. Dried bottom of Urmia Lake as a new source of dust in the northwestern Iran: understanding the impacts on local and regional air quality. Atmos. Environ. 262, 118635 (2021).
Article  Google Scholar 
Lazur, A., VanDerwerker, T. & Koepenick, K. Review of implications of road salt use on groundwater quality — corrosivity and mobilization of heavy metals and radionuclides. Water Air Soil Pollut. 231, 474 (2020).
Article  Google Scholar 
McNaboe, L. A., Robbins, G. A. & Dietz, M. E. Mobilization of radium and radon by deicing salt contamination of groundwater. Water Air Soil Pollut. 228, 94 (2017).
Article  Google Scholar 
Vinson, D. S. et al. Occurrence and mobilization of radium in fresh to saline coastal groundwater inferred from geochemical and isotopic tracers (Sr, S, O, H, Ra, Rn). Appl. Geochem. 38, 161–175 (2013).
Article  Google Scholar 
Tamamura, S. et al. Salinity dependence of 226Ra adsorption on montmorillonite and kaolinite. J. Radioanal. Nucl. Chem. 299, 569–575 (2014).
Article  Google Scholar 
Edwards, M. & Triantafyllidou, S. Chloride‐to‐sulfate mass ratio and lead leaching to water. J. Am. Water Work. Assoc. 99, 96–109 (2007).
Article  Google Scholar 
Likens, G. E., Driscoll, C. T. & Buso, D. C. Long-term effects of acid rain: response and recovery of a forest ecosystem. Science 272, 244–246 (1996).
Article  Google Scholar 
Bai, J. et al. Nitrification potential of marsh soils from two natural saline–alkaline wetlands. Biol. Fertil. Soils 46, 525–529 (2010).
Article  Google Scholar 
Duan, S. & Kaushal, S. S. Salinization alters fluxes of bioreactive elements from stream ecosystems across land use. Biogeosciences 12, 7331–7347 (2015).
Article  Google Scholar 
Van Vliet, M. T. H., Flörke, M. & Wada, Y. Quality matters for water scarcity. Nat. Geosci. 10, 800–802 (2017).
Article  Google Scholar 
Steffen, W. et al. Sustainability. Planetary boundaries: guiding human development on a changing planet. Science 347, 1259855 (2015).
Article  Google Scholar 
Weinberger, R., Lyakhovsky, V., Baer, G. & Begin, Z. B. Mechanical modeling and InSAR measurements of Mount Sedom uplift, Dead Sea basin: implications for effective viscosity of rock salt. Geochem. Geophys. Geosyst. 7, Q05014 (2006).
Article  Google Scholar 
Bruthans, J. et al. Holocene marine terraces on two salt diapirs in the Persian Gulf, Iran: age, depositional history and uplift rates. J. Quat. Sci. 21, 843–857 (2006).
Article  Google Scholar 
Weinberg, R. F. The upward transport of inclusions in Newtonian and power-law salt diapirs. Tectonophysics 228, 141–150 (1993).
Article  Google Scholar 
Wilkinson, B. H., McElroy, B. J., Kesler, S. E., Peters, S. E. & Rothman, E. D. Global geologic maps are tectonic speedometers — rates of rock cycling from area-age frequencies. Geol. Soc. Am. Bull. 121, 760–779 (2009).
Article  Google Scholar 
Stockmann, U., Minasny, B. & McBratney, A. B. How fast does soil grow? Geoderma 216, 48–61 (2014).
Article  Google Scholar 
Wu, C., Lin, Z. & Liu, X. The global dust cycle and uncertainty in CMIP5 (Coupled Model Intercomparison Project phase 5) models. Atmos. Chem. Phys. 20, 10401–10425 (2020).
Article  Google Scholar 
Grythe, H., Ström, J., Krejci, R., Quinn, P. & Stohl, A. A review of sea-spray aerosol source functions using a large global set of sea salt aerosol concentration measurements. Atmos. Chem. Phys. 14, 1277–1297 (2014).
Article  Google Scholar 
National Atmospheric Deposition Program. National trends network gradient map. NADP https://nadp.slh.wisc.edu/maps-data/ntn-gradient-maps (2021).
Likens, G. E. Biogeochemistry of a Forested Ecosystem 3rd edn (Springer, 2013).
Schlesinger, W. H. Community structure, dynamics and nutrient cycling in the Okefenokee Cypress swamp-forest. Ecol. Monogr. 48, 43–65 (1978).
Article  Google Scholar 
Lucas, Y. The role of plants in controlling rates and products of weathering: importance of biological pumping. Annu. Rev. Earth Planet. Sci. 13, 135–163 (2001).
Article  Google Scholar 
van der Heijden, G. et al. Mg and Ca uptake by roots in relation to depth and allocation to aboveground tissues: results from an isotopic labeling study in a beech forest on base-poor soil. Biogeochemistry 122, 375–393 (2015).
Article  Google Scholar 
Rose, D. A., Konukcu, F. & Gowing, J. W. Effect of watertable depth on evaporation and salt accumulation from saline groundwater. Soil Res. 43, 565 (2005).
Article  Google Scholar 
Gran, M. et al. Dynamics of water vapor flux and water separation processes during evaporation from a salty dry soil. J. Hydrol. 396, 215–220 (2011).
Article  Google Scholar 
Yu, L. A global relationship between the ocean water cycle and near-surface salinity. J. Geophys. Res. 116, C10025 (2011).
Article  Google Scholar 
Qu, T., Gao, S. & Fukumori, I. What governs the North Atlantic salinity maximum in a global GCM? Geophys. Res. Lett. 38, L07602 (2011).
Article  Google Scholar 
Milliman, J. D. & Droxler, A. W. Neritic and pelagic carbonate sedimentation in the marine environment: ignorance is not bliss. Geol. Rundsch. 85, 496–504 (1996).
Article  Google Scholar 
Krissansen-Totton, J. & Catling, D. C. A coupled carbon-silicon cycle model over Earth history: reverse weathering as a possible explanation of a warm mid-Proterozoic climate. Earth Planet. Sci. Lett. 537, 116181 (2020).
Article  Google Scholar 
Von Damm, K. L. et al. Chemistry of submarine hydrothermal solutions at 21 °N, East Pacific Rise. Geochim. Cosmochim. Acta 49, 2197–2220 (1985).
Article  Google Scholar 
Elderfield, H. & Schultz, A. Mid-ocean ridge hydrothermal fluxes and the chemical composition of the ocean. Annu. Rev. Earth Planet. Sci. 24, 191–224 (1996).
Article  Google Scholar 
Lake, R. A. & Lewis, E. L. Salt rejection by sea ice during growth. J. Geophys. Res. 75, 583–597 (1970).
Article  Google Scholar 
Dickson, R. R. & Brown, J. The production of North Atlantic Deep Water: sources, rates, and pathways. J. Geophys. Res. 99, 12319–12341 (1994).
Article  Google Scholar 
Worster, M. G. & Rees Jones, D. W. Sea-ice thermodynamics and brine drainage. Phil. Trans. R. Soc. A 373, 20140166 (2015).
Article  Google Scholar 
Wells, A. J., Wettlaufer, J. S. & Orszag, S. A. Brine fluxes from growing sea ice. Geophys. Res. Lett. 38, L04501 (2011).
Article  Google Scholar 
Wakatsuchi, M. & Ono, N. Measurements of salinity and volume of brine excluded from growing sea ice. J. Geophys. Res. 88, 2943–2951 (1983).
Article  Google Scholar 
Gherardi, J.-M. et al. Evidence from the Northeastern Atlantic basin for variability in the rate of the meridional overturning circulation through the last deglaciation. Earth Planet. Sci. Lett. 240, 710–723 (2005).
Article  Google Scholar 
Bresler, E. Transport of salts in soils and subsoils. Agric. Water Manag. 4, 35–62 (1981).
Article  Google Scholar 
Wagenet, R. J. in Chemical Mobility and Reactivity in Soil Systems Ch. 9 (eds Nelson, D. W., Elrick, D. E. & Tanji, K. K.) 123–140 (Wiley, 1983).
Howe, J. A. & Smith, A. P. in Principles and Applications of Soil Microbiology 3rd edn (eds Gentry, T. J. et al.) 23–55 (Elsevier, 2021).
Danielsen, S. W. & Kuznetsova, E. in Engineering Geology for Society and Territory Vol. 5 (eds Lollino, G. et al.) 41–44 (Springer, 2015).
Fookes, P. G., Gourley, C. S. & Ohikere, C. Rock weathering in engineering time. Q. J. Eng. Geol. 21, 33–57 (1988).
Article  Google Scholar 
Kaonga, C. C., Kosamu, I. B. M. & Utembe, W. R. A review of metal levels in urban dust, their methods of determination, and risk assessment. Atmosphere 12, 891 (2021).
Article  Google Scholar 
Tegen, I., Lacis, A. & Fung, I. The influence on climate forcing of mineral aerosols from disturbed soils. Nature 380, 419–422 (1996).
Article  Google Scholar 
Willison, M. J., Clarke, A. G. & Zeki, E. M. Chloride aerosols in central northern England. Atmos. Environ. 23, 2231–2239 (1989).
Article  Google Scholar 
Thorslund, J., Bierkens, M. F. P., Oude Essink, G. H. P., Sutanudjaja, E. H. & van Vliet, M. T. H. Common irrigation drivers of freshwater salinisation in river basins worldwide. Nat. Commun. 12, 4232 (2021).
Article  Google Scholar 
Yakirevich, A. et al. Modeling the impact of solute recycling on groundwater salinization under irrigated lands: a study of the Alto Piura aquifer, Peru. J. Hydrol. 482, 25–39 (2013).
Article  Google Scholar 
Schlesinger, W. H. Some thoughts on the biogeochemical cycling of potassium in terrestrial ecosystems. Biogeochemistry 154, 427–432 (2021).
Article  Google Scholar 
Hinckley, E.-L. S., Crawford, J. T., Fakhraei, H. & Driscoll, C. T. A shift in sulfur-cycle manipulation from atmospheric emissions to agricultural additions. Nat. Geosci. 13, 597–604 (2020).
Article  Google Scholar 
Page, K. L. et al. Processes and magnitude of CO2, CH4, and N2O fluxes from liming of Australian acidic soils: a review. Soil Res. 47, 747–762 (2009).
Article  Google Scholar 
Thorslund, J. & van Vliet, M. T. H. A global dataset of surface water and groundwater salinity measurements from 1980–2019. Sci. Data 7, 231 (2020).
Article  Google Scholar 
United Nations Environment Programme. GEMStat database of the Global Environment Monitoring System for Freshwater (GEMS/Water) programme. GEMStat https://gemstat.org/data/data-portal (2018).
Environment and Climate Change Canada. National long-term water quality monitoring data. ECCC https://data.ec.gc.ca/data/substances/monitor/national-long-term-water-qualitymonitoring-data (2022).
US Geological Survey. USGS water data for the nation. USGS https://waterdata.usgs.gov/nwis (2021).
Elvidge, C. D. et al. Global distribution and density of constructed impervious surfaces. Sensors 7, 1962–1979 (2007).
Article  Google Scholar 
Glicksman, R. L. & Earnhart, D. H. The comparative effectiveness of government interventions on environmental performance in the chemical industry. Stanf. Environ. Law J. 26, 317–372 (2007).
Google Scholar 
Schroeder, C. Foreword: a decade of change in regulating the chemical industry. Law Contemp. Probl. 46, 1–40 (1983).
Google Scholar 
Wetzel, R. G. Limnology: Lake and River Ecosystems (Gulf Professional, 2001).
Olson, J. R. Predicting combined effects of land use and climate change on river and stream salinity. Phil. Trans. R. Soc. B 374, 20180005 (2019).
Article  Google Scholar 
Download references
This work was supported by National Science Foundation GCR 2021089 and 2021015, Maryland Sea Grant SA75281870W and the Washington Metropolitan Council of Governments contract number 21-001.
Department of Geology & Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, USA
Sujay S. Kaushal, Ruth R. Shatkay, Sydney A. Shelton, Alexis M. Yaculak, Carly M. Maas, Jenna E. Reimer & Joseph T. Malin
Cary Institute of Ecosystem Studies, Millbrook, NY, USA
Gene E. Likens
University of Connecticut, Storrs, CT, USA
Gene E. Likens
Office of Research and Development, Center for Public Health and Environmental Assessment, Pacific Ecological Systems Division, US Environmental Protection Agency, Corvallis, OR, USA
Paul M. Mayer
Occoquan Watershed Monitoring Laboratory, The Charles E. Via Jr Department of Civil and Environmental Engineering, Virginia Tech, Manassas, VA, USA
Stanley B. Grant, Shantanu V. Bhide & Megan A. Rippy
Center for Coastal Studies, Virginia Tech, Blacksburg, VA, USA
Stanley B. Grant & Megan A. Rippy
Falk School of Sustainability, Chatham University, Gibsonia, PA, USA
Ryan M. Utz
You can also search for this author in PubMed Google Scholar
You can also search for this author in PubMed Google Scholar
You can also search for this author in PubMed Google Scholar
You can also search for this author in PubMed Google Scholar
You can also search for this author in PubMed Google Scholar
You can also search for this author in PubMed Google Scholar
You can also search for this author in PubMed Google Scholar
You can also search for this author in PubMed Google Scholar
You can also search for this author in PubMed Google Scholar
You can also search for this author in PubMed Google Scholar
You can also search for this author in PubMed Google Scholar
You can also search for this author in PubMed Google Scholar
You can also search for this author in PubMed Google Scholar
S.S.K., G.E.L., P.M.M., R.R.S., S.A.S., S.B.G., R.M.U. and M.A.R. contributed to writing of the paper. R.R.S., S.A.S., R.M.U., A.M.Y., C.M.M., J.E.R., S.V.B. and J.T.M. contributed to researching data. All the authors contributed to the discussion of content and review and editing of the manuscript.
Correspondence to Sujay S. Kaushal.
The authors declare no competing interests.
Nature Reviews Earth & Environment thanks William Hintz, Miguel Cañedo-Argüelles and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
GEMStat: https://gemstat.org
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Reprints and Permissions
Kaushal, S.S., Likens, G.E., Mayer, P.M. et al. The anthropogenic salt cycle. Nat Rev Earth Environ (2023). https://doi.org/10.1038/s43017-023-00485-y
Download citation
Accepted:
Published:
DOI: https://doi.org/10.1038/s43017-023-00485-y
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Advertisement
Nature Reviews Earth & Environment (Nat Rev Earth Environ) ISSN 2662-138X (online)
© 2023 Springer Nature Limited
Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

source

Leave a Reply

Your email address will not be published.

*